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On the Multi-User Diversity with Secrecy in Uplink Wiretap Networks
Hu Jin, Member, IEEE, Won-Yong Shin, Member, IEEE, and Bang Chul Jung, Member, IEEE

Abstract—In this letter, we consider the uplink wiretap net-
work which consists of a base station, N legitimate users,
and several eavesdroppers. We propose a novel user scheduling
algorithm based on a threshold, which achieves the optimal
multi-user diversity gain, i.e., log logN . To the best of our
knowledge, there has been no such result in uplink wiretap
networks. In order to obtain good throughput performance in
the network, the threshold value needs to be carefully chosen.
Through extensive simulations, we observe that the proposed user
scheduling outperforms the conventional scheduling algorithms
and it approaches the throughput performance of the optimal
user scheduling algorithm in various scenarios.

Index Terms—Physical-layer security, secrecy capacity,
throughput scaling, multi-user diversity, user scheduling.

I. INTRODUCTION

IN a pioneering paper [1], Shannon introduced the notion of
information-theoretic secrecy, and established the achiev-

ability of perfectly secure communications in the presence of
eavesdroppers. In [2], Wyner characterized a three-terminal
wiretap channel, where the achievability of a positive secrecy
rate was derived only over a physically degraded discrete
memoryless channel. Subsequent work has shown that the
analysis of multi-user channel models with secrecy constraints
highlights the essential role of feedback and jamming as means
to increase secrecy rates [3], [4]. Since it is difficult to obtain
the exact secrecy capacity region in most multi-user scenarios,
there has recently been a significant interest in analyzing
the asymptotic performance of a variety of wireless wiretap
networks at high signal-to-noise ratio (SNR) in terms of secure
degrees-of-freedom [5], [6].

As an alternative approach, the asymptotic performance
of multi-user networks can be characterized by showing a
throughput scaling behavior when there exist infinitely many
users. Several techniques that exploit the usefulness of fading
in broadcast channels having many users have been proposed,
thus resulting in the multi-user diversity (MUD) gain [7]–
[9]. Various communication scenarios such as cooperative
relaying and cognitive radio networks have been extensively
studied by exploiting the MUD gain [10], [11]. For secure
communications, we also need to consider the presence of
(potential) multiple eavesdroppers in wiretap channels [12],
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Fig. 1. An uplink wiretap network consisting of a base station, multiple
users, and multiple eavesdroppers.

[13] . In [12], it has been studied how to exploit the MUD gain
by selecting a trusted-relay in a two-hop network. In addition,
the problem of broadcasting secret information was examined
in [13], where it was shown that the average secrecy rate is
rather reduced as the number of users in a network increases,
thus resulting in no MUD gain.

In this letter, we introduce an opportunistic user scheduling
strategy which achieves the optimal MUD gain, i.e., log logN
in uplink wiretap networks. In the proposed user scheduling,
instead of using complex coding schemes (e.g., superposed
codes), the BS selects a certain user based on a pre-determined
threshold (i.e., scheduling criteria) which is related to the
maximum amount of information overheard by eavesdroppers.

II. SYSTEM MODEL

The system model is illustrated in Fig. 1. N users commu-
nicate with a BS in the uplink where there exists K eaves-
droppers which try to overhear the communications between
the users and the BS. We assume that each node (user, BS, or
eavesdropper) is equipped with a single antenna.

The term αihi ∈ C denotes the channel coefficient between
the i-th user and the BS, consisting of the large-scale path-loss
component αi and the small-scale complex fading component
hi, where i ∈ {1, · · · , N}. The term βikhik ∈ C denotes the
channel coefficient between the i-th user and the k-th eaves-
dropper, consisting of the large-scale path-loss component βik

and the small-scale complex fading component hik, where
k ∈ {1, · · · ,K}. For simplicity, we assume that the users
experience the same degree of path-loss attenuation to the BS,
i.e., the large-scale term αi is assumed to be 1. The channel
is assumed to be complex Gaussian, having zero-mean and
unit variance, and independent across different i and k. We
assume a block-fading model, i.e., the channels are constant
during one block (e.g., frame) and change independently for
every block. Suppose that only one legitimate user transmits
its data packet through a certain scheduling algorithm of the
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BS1. Then, the received signals y ∈ C at the BS and yk ∈ C

at the k-th eavesdropper when the i-th user is transmitting are
given by

y = hixi + z,
yk = βikhikxi + zk,

(1)

where xi represents the transmit symbol of the i-th user and
z ∈ C and zk ∈ C denote the circularly symmetric complex
additive white Gaussian noise (AWGN) at the BS and the k-
th eavesdropper, respectively, having zero-mean and variance
N0. We assume that each user has an average transmit power
constraint E[|xi|2] ≤ P . For a notational convenience we
denote the transmitted SNR as ρ = P/N0.

Suppose that the i-th user knows its channel gains to the
BS and to the eavesdroppers, i.e., hi and βikhik, respectively.2

The secrecy data rate of the i-th user is then expressed as [14],
[15]:

Ci = log
(
1 + |hi|2ρ

)−
log

(
1 + max{|βi1hi1|2, · · · , |βiKhiK |2}ρ)

= log

(
1 + |hi|2ρ

1 + max{|βi1hi1|2, · · · , |βiKhiK |2}ρ
)
.

(2)

The secrecy throughput of the uplink wiretap network is
maximized when the BS selects the user yielding the best
secrecy data rate among N users in each slot.

III. OPPORTUNISTIC USER SCHEDULING BASED ON A

THRESHOLD

When there is no eavesdropper in an uplink network, it is
well known that the optimal throughput scales as loglogN
when the number of users in the network (N ) tends to infinity
[7]. However, the optimal throughput scaling with secrecy in
the wiretap uplink network has not been shown. In this section,
we introduce a threshold-based sub-optimal user scheduling
algorithm which achieves the optimal throughput scaling for
the uplink wiretap network. In the proposed user scheduling
algorithm, one user is selected in the sense of having large
channel gain to the BS as well as having small capacity loss
due to the eavesdroppers. The basic idea of the proposed
scheduling is to find a certain user out of N users satisfying
the following criterion3:

|βikhik|2ρ ≤ ηI , for k = 1, 2, · · · ,K, (3)

where ηI denotes a pre-determined positive threshold. In
particular, the value ηI > 0 is set to a small constant in order
to assure that the capacity loss due to the eavesdroppers is
small. Suitable values of ηI will be specified in the Section V.
Under the proposed scheduling, the users satisfying (3) request

1It is a feasible transmission scenario since under the model, it is sufficient
to achieve full degrees-of-freedom gain with single user transmission.

2It does not seem easy for each user to acquire channel state information
(CSI) to the eavesdroppers under the environment where the eavesdroppers
listen to users’ data packets (but not transmit their own signal). If the
eavesdroppers transmit their own signals, then each user can obtain the CSI
from the received signal from eavesdroppers. Even though assuming CSI to
the eavesdroppers at each user may not be feasible, it will provide an upper
bound on the performance given by any scheduling method. Note that such an
assumption has commonly been made in the literature dealing with secrecy
(refer to the previous studies [4], [6], [17] on the secrecy rate analysis).

3Although it is not the scope of this paper, it should be noted that the
proposed scheme can reduce the feedback overhead of the system since only
the users satisfying (3) need to feedback.

transmission to the BS. Then, the BS selects a user who shows
the maximum signal strength at the BS and the selected user
starts to transmit its data packet.

IV. ANALYSIS OF SECRECY THROUGHPUT SCALING LAW

In the uplink, the transmission rate from each user to BS
may be severely limited due to the existence of eavesdroppers
for secure transmission at the physical layer. Now we show
that the proposed user scheduling in Section III asymptotically
achieves the optimal MUD gain, i.e., log logN , in terms of
the secrecy throughput. The achievability is conditioned by
the scaling behavior between the number of users, N , and the
received SNR. We analyze how N scales with SNR so as to
achieve the optimal MUD gain in uplink wiretap networks.
We start from the following lemma.

Lemma 1: Let f(x) denote a continuous function of x ∈
[0,∞), 0 < f(x) ≤ 1. Then, lim

x→∞ (1− f(x))
x converges to

zero if and only if lim
x→∞xf(x) tends to infinity.

Proof: See Appendix A.
Since the channel coefficient is complex Gaussian with

zero-mean, the term |hik|2 is exponentially distributed, and
its cumulative distribution function (CDF) is given by

Pr
{
|hik|2 ≤ x

}
= 1− e−x for x ≥ 0. (4)

Thus, the term max{|hi1|2, · · · , |hiK |2}, is distributed as

F (x) = (1 − e−x)K . (5)

A lower bound on F (x) is provided in the following lemma.
Lemma 2: For any 0 ≤ x < 1, F (x) in (5) is lower-

bounded by

F (x) ≥ c1x
K , (6)

where c1 = (1− e−1)K .
Proof: From the convexity of 1− e−x, we have

1− e−x ≥ (1− e−1)x, for 0 ≤ x < 1, (7)

which completes the proof.
Now we are ready to establish the main result of this letter.
Theorem 1: For a given constant ε ∈ (0, 1), the proposed

user scheduling achieves log(ερ logN) secrecy throughput
scaling with high probability (whp) in the high SNR regime
if N scales as ρ

K
1−ε0 for a constant ε0 ∈ (ε, 1).

Proof: In order to prove this theorem, we first slightly
modify the proposed scheduling algorithm to have the de-
graded performance, while still achieving the secrecy through-
put scaling. Under this scheduling, the BS randomly selects
one user among users satisfying (3) and the following criteria:

|hi|2 ≥ ηtr, i = 1, 2, · · · , N. (8)

Since the proposed scheduling selects the user showing the
maximum signal strength at the BS while satisfying (3),
the proposed scheduling always results in a better secrecy
throughput performance than the scheduling modified in this
section.

Suppose that ηtr = ε logN . Let β be the maximum value
among βi,k where i ∈ {1, · · · , N} and k ∈ {1, · · · ,K}.
Then, the event that the i-th user satisfies the two criteria
(3) and (8) occurs with the probability larger than or equal to
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F (ηIρ
−1β−2)e−ηtr . Thus, the probability that such an event

occurs for at least one user is lower-bounded by

1− [
1− F (ηIρ

−1β−2)e−ηtr
]N

. (9)

By Lemma 1, (9) converges to 1 as N tends to infinity, if
and only if

lim
N→∞

NF (ηIρ
−1β−2)e−ηtr → ∞. (10)

From Lemma 2, the term in (10) can be lower-bounded by

lim
N→∞

c1N
(
ηIρ

−1β−2
)K

e−ηtr

= c1η
K
I β−2K · lim

N→∞
N

ρK
e−ε logN

= c1η
K
I β−2K · lim

N→∞
N1−ε

ρK
,

which increases with N (or equivalently ρ) as N scales as
ρ

K
1−ε0 for ε0 ∈ (ε, 1). Hence, there exists at least one user

satisfying (3) and (8) whp. From (2), a lower bound on the
achievable secrecy throughput is finally given by

C ≥ log

(
1 + ρηtr
1 + ηI

)

= log

(
1

1 + ηI
+

ε

1 + ηI
· ρ logN

)

= log (c2 + c2ερ logN) ,

(11)

which scales as log(ερ logN), under the condition that N

scales as ρ
K

1−ε0 , where c2 = 1
1+ηI

> 0 is a constant value.
This completes the proof of the theorem.

Remark 1: It is also proved that the optimal throughput
scaling of the uplink wiretap networks is log logN by Theo-
rem 1 while the proposed user scheduling yields a lower bound
on the secrecy throughput performance, compared with the
optimal user scheduling which directly maximizes the secrecy
data rate in (2).

Remark 2: There exists an optimal ηI resulting in the max-
imum secrecy capacity in practical communication scenarios
with finite N even though (11) indicates that ηI should be as
low as possible to achieve large secrecy throughput when N
tends to infinity. A smaller ηI reduces the secrecy capacity
loss, but it corresponds to a smaller MUD gain because the
number of users satisfying the strict condition on the secrecy
capacity loss becomes small. On the other hand, if a larger
ηI is set, then a more MUD gain can be achieved because
the number of users satisfying (3) becomes large, but it
also induces a larger secrecy capacity loss. Hence, ηI needs
to be carefully chosen in order to achieve a better secrecy
throughput performance for given parameters N , ρ and K .

V. NUMERICAL RESULTS

In this section, we perform empirical simulations to evaluate
the secrecy throughput with the proposed user scheduling in
the uplink wiretap network and investigate the effects of N ,
ρ and K on the secrecy throughput.

Fig. 2 shows the optimal ηI for varying N . The optimal ηI
tends to be smaller as the number of users increases, which
means more strict condition on the capacity loss due to the
eavesdroppers is favorable when a large number of users exist.
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Fig. 2. The optimal ηI for the maximum secrecy throughput of the proposed
user scheduling according to the number of users in a network (N ).

Interestingly, the optimal ηI (in dB) becomes linearly reduced
as N increases in logarithmic scale. The optimal ηI becomes
large as ρ and K increase, but we omit the figures because of
page limitation in this letter. In the next figures, it is assumed
that the proposed scheduling operates with the optimal ηI .

Fig. 3 shows the secrecy throughput for varying the number
of users in the network when ρ = 10dB and K = 3. In
this figure, two user scheduling algorithms are considered
as references: MaxSNR and MinSNR. The term of MaxSNR
indicates the user scheduling algorithm that selects the user
having the maximum SNR at the BS regardless of the channel
gain to eavesdroppers, while the term of MinSNR indicates
the user scheduling algorithm that selects the user having
the minimum SNR at the eavesdroppers regardless of the
channel gain to the BS. The optimal scheduling algorithm
is also shown, where the scheduler selects one user in the
sense of maximizing the secrecy throughput. We can observe
that the secrecy throughputs of both the optimal scheduling
and the proposed scheduling increase with nearly the same
scale as N increases. However, the secrecy throughputs of
both MaxSNR and MinSNR are much smaller than those of
the optimal scheduling and the proposed scheduling. In this
simulation, we assume that βik = 1 for i, k ∈ {1, · · · ,K}.

Fig. 4 shows the secrecy throughput over varying the
transmitted SNR ρ. We can observe the proposed scheduling
always outperforms the conventional MaxSNR and MinSNR
strategies. All algorithms are saturated in terms of secrecy
throughput as ρ increases and there exists a constant gap
between the throughput of the optimal scheduling and that
of the proposed scheduling.

Fig. 5 shows the secrecy throughput of various scheduling
algorithms for varying the number of eavesdroppers, K . It is
shown that the secrecy throughput decreases as the number of
eavesdroppers increases as expected. However, the proposed
user scheduling yields almost the same throughput as that of
the optimal scheduling regardless of K .

VI. CONCLUSION

We have proposed a sub-optimal user scheduling which
operates with a threshold related to the channel gain to the
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Fig. 3. Secrecy throughput of various user scheduling algorithms for varying
N when K = 3 and ρ = 10dB.
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Fig. 4. Secrecy throughput for varying SNR (ρ) when K = 3 and N = 100.

eavesdroppers. It was proved that the secrecy throughput of
the proposed user scheduling is optimal in that its throughput
scaling is the same as that of the uplink network without
eavesdroppers. As a by-product, it was proved that the op-
timal throughput scaling can be achieved in uplink wiretap
networks.

APPENDIX

A. Proof of Lemma 1

If lim
x→∞xf(x) → ∞, then it follows that f(x) = ω

(
1
x

)
[16],

thus resulting in

lim
x→∞ (1− f(x))

x
= o

(
lim
x→∞

(
1− 1

x

)x)
= o(1)

for 0 < f(x) ≤ 1. It is hence seen that lim
x→∞ (1− f(x))x

converges to zero. If lim
x→∞xf(x) is finite, then there exists a

constant c3 > 0 such that xf(x) < c3 for any x ≥ 0. We then
have

lim
x→∞ (1− f(x))x > lim

x→∞

(
1− c3

x

)x

= e−c3 > 0,

which completes the proof.
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